
On Automatic Generation of IEC61850/IEC61499
Substation Automation Systems Enabled by Ontology

Chen-Wei Yang1, Valeriy Vyatkin1,2, Arash Mousavi1, Victor Dubinin3
Department of Computer Science, Electrical and Space Engineering

1Lulea University of Technology, Lulea, Sweden
2Aalto University, Helsinki, Finland
3University of Penza, Penza, Russia

chen-wei.yang@ltu.se, vyatkin@ieee.org, arash.mousavi@ltu.se, victor_n_dubinin@yahoo.com

Abstract—This paper presents an introductory step in the

automatic generation of distributed control software for power
distribution automation systems based on Ontology Driven
Engineering enabled by industrial standards IEC61850 and
IEC61499. The novelty of this approach is the ability of
automatically generating the logical connections between the
logical nodes. The paper covers the several stages of the
transformation process, such as developing the IEC61850
ontology and the ontology transformation rules. The developed
IEC61850 ontology includes the logical nodes descriptions and
additional contextual relations between the logical nodes which is
lacking in the IEC61850 SCL configuration language. Then, the
IEC61850 ontology is transformed to an existing IEC61499
ontology, adding classes of IEC61850 logical nodes as IEC61499
function blocks in the IEC61499 ontology. The means of the
transformation of the ontologies is based on the eSWRL sematic
web rules language, an extension to the rule language SWRL.
The end result is the development of an IEC61850 ontology and a
set of eSWRL rules which facilitates the ontology transformation.

Keywords—component; IEC61850; IEC61499; Ontology;
eSWRL

I. INTRODUCTION

The so called Smart Grid is the future electricity supply
infrastructure which is expected to incorporate communication
infrastructure and bi-directional power flow providing real-
time information for the actors involved [1]. It is expected the
usage of distributed renewable energy resources (Photovoltaic,
hydro and wind, etc.) and Distributed Energy Storage Devices
(Battery, Plug-hybrid electric vehicles) will increase,
transforming the traditional centralized control architecture of
the grid into a distributed one [2]. An example of one such
system which reflects these changes is the FREEDM system
[3]. The proposed FREEDM system allows the integration of
DRER resources and introduces decentralized control for fault
management and energy management.

In the Smart Grid, there will be many intelligent devices

from different vendors interacting with one another.
Therefore, interoperability is an important requirement to such
intelligent devices. In the Smart Grid Reference Model
(SGAM) [1] shown in Fig. 1, there are five main
interoperability layers identified.

The main focus of this work is on the lower rung of the
interoperability layers centered on harmonizing the
communication and the component layers. The two standards
which are suitable in the harmonization of these two
interoperability layers are the substation automation standard
IEC61850 and the distributed automation standard IEC61499.
IEC61850 was first introduced as a standard for substation
automation systems. The aim of the standards is standardize
communication in substation automation systems (SAS)
enabling interoperability between Intelligent Electronic
Devices (IED) from different device vendors. Its advantage in
providing a standardized means of communication between
distributed IED devices will be greatly beneficial to future
smart grid systems. While IEC61850 provides a
comprehensive information model of substation automation
components, the internal implementation of control elements
or the control logic of IEC61850 logical nodes are out of the
scope of the standard. However, another open standard,
IEC61499, has been proposed in [4] to complement IEC61850
by implementing the internal control of the IEC61850 logical
nodes. IEC61499 defines a reference architecture for
distributed automation control systems, which comprises of
such design artifacts as basic and composite function blocks

Fig. 1. Reference Smart Grid model from NIST [1]

(FB). FBs are capable of capturing the IEC61850 hierarchical
information model from the logical node level to the basic
data level. In addition, it provides a native platform for
designing distributed control logic for IEC61850 systems.
There has been a number of works following [4-6] illustrating
the benefits of the standards harmonization in various
application scenarios. This work is a next step in the
harmonization effort, aiming at automatic generation of
IEC61850 and IEC61499 based control systems using
Ontology Driven Engineering (ODE).

The paper is structured in the following manner. Chapter II
will discuss the related works in IEC61850 and IEC61499. In
addition, existing works in automatic code generation of
IEC61850 systems are also discussed. Chapter III presents the
novel idea of automatically generating IEC61850/61499
systems using ODE. Chapter IV provides a case study, which
illustrates the initial transformation process of the proposed
solution and the conclusion of the paper is in Chapter V.

II. RELATED WORKS

A. IEC61850 and IEC61499

The idea of combining IEC61850 and IEC61499 into a
distributed substation automation solution and prototypes of
such solution is discussed in [4-6] with a reference example
using the function block development platform FBDK. In
addition, a co-simulation environment was also proposed
between IEC61499 and Matlab Simulink to provide an
environment for validating the IEC61850/61499 control
systems. The concept of Intelligent Logical Nodes (iLN) is the
IEC61499 realizations of the IEC61850 logical nodes as
function blocks. The benefits of the iLN concept is that in
addition of fully capturing the hierarchical logical node
information models in IEC61499 function blocks, the iLN
concept also provides a platform where intelligence or logic
could be added into the logical nodes providing the ability of
decision making for each logical nodes. Thus creating a
distributed system where each distributed node (Group of the
intelligent logical nodes) is capable of collaborating and
making decisions in a distributed manner for smart grid
control and protection schemes.

There are existing research works in the substation
automation domain which also highlights the viability of such
solution. Article [7] illustrates an IEC61850 based protection
scheme with GOOSE messaging implemented with IEC61499
and IEC61850 using the IEC61499 development platform
nxtStudio. In [8], GOOSE messaging function blocks were
developed in the function block development platform
ISaGRAF to allow interoperable communication between
IEC61850/61499 solutions and commercial IEC61850
Intelligent Electronic Devices (IED). Another solution
presented in [9] uses open-source function block development
platform 4DIAC and the Matlab Power System Analysis
Toolbox (PSAT) to create a smart grid co-simulation
environment. All these related works demonstrate the potential
of the IEC61850/61499 synergy.

B. Automatic Generation of IEC61850/ 61499 Systems

There are existing research works which apply automatic
generation to create IEC61850 based control systems [10, 11].
The source of generation is commonly the IEC61850 System
Configuration Language (SCL). SCL is a XML based
configuration language introduced to allow the exchange of
system configuration between IEC61850 systems. There are in
total six types of SCL configuration files and each
configuration file type is used to configure a different part of
the IEC61850 system. Examples of SCL files include the
Configured IED Description (CID) for configuring individual
IED devices and the System Configuration Description (SCD).
The SCD file captures the complete configuration of an
IEC61850 system, which includes logical node definitions,
communication configurations and individual IED
configurations. In most of the existing works where the
automatic generation of IEC61850 system is concerned, the
SCD file is used as the source of generation since it contains
the entire configuration of an IEC61850 system. The sections
of the SCD file, which are used for the generation, are the
DataTypeTemplates, the IED section and the communication
section. The DataTypeTemplates contains the definitions of
the all logical nodes used in the IEC61850 system. This is
essential as the definitions constitute the multi-layer
information model of the logical node including the
DataObjects and the DataAttributes of each unique logical
node model. The IED section captures the configurations of
each IED devices in the IEC61850 system. There can be more
than one IED device within a system and there will be an IED
section for each IED in the system. The communication
section contains the configuration of the communication
protocols such as Generic Object-Oriented Substation Event
(GOOSE) messaging and Server/Client communication
configurations. The communication section configures the
entire communication network of the IEC61850 system
defining the addressing of each IED devices (sub-networks
and networks), the packaging of data for transmission (e.g.
GOOSE Dataset) and the signal flow defining the data
exchange between logical nodes. As mentioned previously,
there are existing works, which automatically generate code
for IEC61850 systems. However, there is very little existing
work on generating IEC61499 based control systems based on
IEC61850 models.

In [10], an open platform for rapid-prototyping protection
and control schemes with IEC61850 is proposed. One part of
the open platform is to automatically generate low-level
communication configurations and the logical node
information model. Lower-level communication includes
GOOSE messaging (Configuration of GOOSE datasets) and
Sampled-Value (SV) messaging. In [10], the SCD file is used
as the source of the automatic generation process. The target
code is generated in the C programming language. The
information models are generated by parsing the SCD XML.
The logical node definitions are extracted from SCD and each
hierarchical level of the logical node is generated. Data type of
each attribute, along with data object types and the logical
node types are represented as hierarchical C data structure.

In [12], a tool chain for smart grid automation framework
for the design of IEC61850/IEC61499 is proposed with
automatic generation being the core of the framework. The
tool chain, also known as SysGRID, takes the SCL XML as an
input to automatically generates IEC61850/IEC61499
systems. The automatic generation process is ruled based by
parsing the SCD XML to an equivalent IEC61499 XML.
Hierarchical logical nodes’ information models are generated
as (composite) function block types called Intelligent Logical
Nodes (iLN) [6].

A shortcoming of the SysGRID tool chain is the lack of
ability to create meaningful logical connections between the
logical node function block instances in the generated
IEC61499 application. Logical connections between function
blocks define the control and data flow between blocks and
are essential for complete definition of the function block
application’s semantics. This work aims to take the automatic
generation a step further to allow the logical connections
between the logical node function blocks to be automatically
connected.

III. NOVEL APPROACH

A. Ontology as the basis of IEC61499 code generation

There are existing works where ontology has been applied
in the IEC61850 research domain. The majority use of
ontology currently is for the harmonizing IEC61850 and the
Common Information Models (CIM) which includes
IEC61970 and IEC61968 as shown in the work [13].
However, ontology has not yet been applied in the application
of automatic generation of IEC61850 substation automation
systems. In the domain of IEC61499, ontology is already used
for the purpose of automatic generation of IEC61499 control
systems. Article [14] utilizes ontology to facilitate the
transformation of IEC61499 systems from traditional
IEC61131-3 PLC systems. In [15], ODE was used as the basis
for the automatic generation of IEC61499 control codes for a
Baggage Handling System.

B. Contextual Relations Between Logical Nodes

Even though IEC61850 provides a comprehensive library
of semantic models known as logical nodes, there is a lack of
concrete semantic information attached to the logical nodes.
This was intentional on the part of the TC57 working group to
ensure interoperability between the logical nodes. Since
IEC61499 is a block diagram based language, logical
connections between logical nodes showing flow of data is
important in the design of IEC61499 control systems.

In the first edition of the IEC61850 standard, the data
variables defined in each logical node could be classified as
settings, control and output. The classification of variables as
input variable is intentionally avoided to preserve
interoperability from the communication point of view. From
the communication’s point of view, it is not necessary to
standardize input variables. Interoperability can be achieved
by standardizing variables, such as: settings, status and output
variables. For example, between the logical nodes TCTR
(Current Transformer Logical Nodes) and PIOC (Instaneous

Overcurrent Logical Node), there is no clearly defined
relationships between the two logical nodes. However,
relations between the two logical nodes can be defined from a
particular context. In the context of overcurrent protection,
TCTR will have a direct logical connection to the PIOC
logical nodes as the PIOC logical node requires the
measurement readings from the current transformer logical
node TCTR to determine whether an overcurrent fault has
occurred. Therefore, simply having an ontological model of an
IEC61850 configuration derived from the SCL configuration
is not enough, contextual information which provides logical
relations between logical nodes in IEC61850 based protection
schemes is also necessary in order to infer the relations
between the logical nodes. The advantage of using ontology as
the system container is that it is able to capture semantic
relationships between the IEC61850 components (I.E. the
logical nodes) whereas XML is only able to capture the
syntactal relationships between the IEC61850 components. In
addition, the semantic correctness of the transformed target
IEC61499 ontology can be checked by using semantic rules
defined in the form such as SQWRL.

C. Automatic Generation of IEC61499 Driven by ODE

The idea of using ODE for the purpose of automatically
generating IEC61499 systems was first proposed in [15]. The
Semantic Web Rule Language (SWRL) is a language used to
express rules and logics for the Semantic Web. Due to the rule
of monotonicity, SWRL cannot be used to modify existing
information in ontology. This means that it is not possible to
create new instances, delete existing instances or relations
between existing instances. This is problematic when
generating IEC61499 code as new instances of function
blocks, input and output interfaces need to be dynamically
created. To overcome these limitations, an extension to the
SWRL language called eSWRL was proposed in [15] which
supports the creation and deletion of classes, object properties
and class instances. The justifications and advantages of using
eSWRL for the purpose of ontology transformation can be
found at [15].

The case study used in [15] was a baggage handling
system. For this paper, a similar approach to code generation
is applied, but the application domain is substation automation
control using IEC61850 and IEC61499. Due to size
limitations, only the first stage of the automatic generation
process is discussed in this paper, covering the development of
the IEC61850 ontology and the ontology transformation rules
used to transform the IEC61850 ontology to the IEC61499
ontology using eSWRL. The IEC61499 ontology will be
adopted from the existing work, which contains a generic
(domain neutral) ontological description of an IEC61499
system not including elements of IEC61850. The Prolog-
based component of the transformation process, which
implements the eSWRL rules, is not covered in this paper.

IV. CASE STUDY: OVERCURRENT PROTECTION

A. Sympathetic Tripping Feeder Model

The case study used to illustrate the initial transformation
process is the Sympathetic Tripping case from [7]. For
illustrative purposes, only one feeder branch will be
considered for this paper. The protection scheme, however,
will still be adopted from the one shown in [7]. The simplified
feeder plant model is shown in Fig. 2. The feeder plant
consists of a current transformer and a circuit breaker. The
associating IEC61850 logical nodes for this feeder are the
Current Transformer logical node TCTR, the Instantaneous
Overcurrent protection logical node PIOC, the Tripping
Condition logical node PTRC and the Circuit Breaker logical
node XCBR.

The protection scheme is adopted from the one shown in

[7] as illustrated in Fig. 3. The current Transformer TCTR will
send periodic current readings to the Overcurrent Protection
logical node PIOC. The signal, which contains the current
reading, is the TCTR.AmpSv_instMag_f signal. The PIOC will
compare the internal overcurrent threshold reading against the
received current reading from the TCTR logical node. If the
received current reading is above the pre-set threshold, then
the PIOC logical node will generate a PIOC.Op_general
signal to the Trip Conditioning logical node PTRC.

The PTRC logical node will check its internal condition of

tripping. In this scenario, an overcurrent occurrence is enough
for the tripping condition to be satisfied. Once the trip
condition is satisfied, the PTRC logical node will generate a
PTRC.Tr_general trip signal to the Circuit Breaker logical
node XCBR. The circuit breaker will open or close depending
on the value of the PTRC.Tr_general signal. The
PTRC.Tr_general signal is of type Boolean and actuates the

circuit breaker to open when the PTRC.Tr_general value is
true and to close when the PTRC.Tr_general value is false.

B. Ontology of IEC61850 Logical Nodes

The IEC61850 ontology of the case study plant model is
implemented in the ontology editor Protégé [14]. The
simplified ontology model of the IEC61850 logical node is
shown in Fig. 4.

The hierarchical model of the IEC61850 logical node is

made up of three levels. The top level is the logical node. Each
logical node is made up of n- instances of data objects, which
makes up the middle layer. Each data object is made up of n-
data attributes, which makes up the lower layer. As can be
seen in Fig. 4, there are nine classes. The TCTR, PIOC, PTRC
and the XCBR classes are the logical node classes. The ACT,
ASG, DPL, SAV and the SPS class are the data object classes.
The data attributes of the data objects are implemented as data
properties. The individuals (in ontology, instances are known
as individuals) of the logical nodes are linked to the data
objects via object properties with the has- prefix. For example,
the TCTR logical node contains a data object called AmpSv of
data object type SAV. The TCTR individual and the SAV
individual are linked via the hasTCTR_AmpSv object property.
The two important property of note are the hasConnection
object property and the has_connection_var data property.
The hasConnection object property between two logical node
individuals indicates that a logical connection exists between
the two logical nodes. The has_connection_var data property
of n logical node individual indicates the input variable that
needs to be created in order to allow other logical node to
make the logical connection. An example is the TCTR and the
PIOC logical nodes as shown in Fig. 3, the TCTR logical node
needs to send the current reading AmpSv_instMag_f value to
the PIOC logical node. The hasConnection object property
will be created between the TCTR individual and the PIOC
individual indicating that TCTR has a logical connection from
itself and the PIOC logical node. In addition, the
has_connection_var will be added as a data property to the
PIOC class individual with the AmpSv_instMag_f, indicating
that an input variable called AmpSv_instMag_f need to be
created on the input interface of the PIOC function block.

C. Logical Node Dependent Input Variables

In the original iLN proposal in [6], each iLN function
block has mirroring input and output variables. That is all data
variables defined in the IEC61850 logical node type are made
as input and output variables of the iLN function block. For
example, the PIOC logical node has the Op_general variable
to indicate that an overcurrent condition has been

Fig. 3. IEC61850 Overcurrent Protection Signal Passing (Sympathetic
Trip).

Fig. 2. Simplified Feeder Plant Model (SympatheticTrip) and the
associating Logical Nodes.

Fig. 4. Ontology of IEC61850 logical nodes in Protégé showing Classes
(Left), Object Properties (Mid) and Data Properties (Right)

detected.When implemented as an iLN, the input of the PIOC
logical node function block will have an input named
Op_general_in and a function block output variable named
Op_general_out as shown in Fig. 5. It makes sense to have the
Op_general_out variable as it indicates that an overcurrent
condition has been detected and the intended use is to have
this information passed onto trip conditioning logical node
PTRC. However, it makes very little sense to have the
Op_general_in as an input variable.

As discussed previously in chapter III, data variables

within each logical node can be classified as settings, controls
and Outputs variables. Firstly, let’s categorize these variables
as either input or output variables in terms of IEC61499
function blocks. Outputs variables are usually logical node
status variables, measured values or metered values that need
to be passed onto other connecting logical nodes. In the
context of IEC61499 function blocks, these types of variables
are likely to be output variables. Settings are variables, which
are necessary to parameterize the initial conditions of the
logical node and are not likely to change its value after the
initialization stage. When implemented as a function block,
settings variables are likely to be input variables. Control
variables are binary or setpoint values, which are usually
external control signals that are modified remotely or manual
control via HMI panels. In terms of IEC61499 function block,
control variables would also be input variables to the function
block. Although both settings and control variables are input
variables when implemented as function blocks, what these
two types of input variables have in common is that these
types of variable do not require information from its
connecting logical node. Therefore, it is possible to simply
parameterize these types of variables and contextual
relationships play almost no part in these variables.

What is of interest are the input variable which requires
logical connections from other logical node as these variables
usually do not exist in the connecting logical node to allow the
logical connection to take place. That is the input variables are
dependent on the logical nodes, which are connected to. This
can be illustrated by the two iLN function blocks in Fig. 6.

The iTCTR function block contains two data variables.
The EEName_name variable is a description variable, which
describes the name of the TCTR logical node and it is an input
variable to the function block. The AmpSv_instMag_f is a
measured variable which measures the periodic current
readings and it is an output variable of the function blocks.
The iPIOC logical node contains three variables, but only two
of the variables are defined in the PIOC class. The setting
variable StrVal_setMag_f sets the Overcurrent Threshold
value and it is an input variable to the function block. The

Op_general variable is a status variable which is an output
variable of the function blocks.

As described in the overcurrent protection scheme in Fig.

3, the TCTR logical node sends AmpSv_instMag_f measured
value to the PIOC logical node to check the measured values
against the preset threshold value StrVal_setMeg_f. However,
the PIOC logical node does not have an AmpSv_instMag_f
variable defined under the PIOC logical node class. Therefore,
it is necessary to create the AmpSv_instMag_f variable as an
input to the PIOC logical node to allow a logical connection
between the TCTR and the PIOC logical node. This is shown
in Fig. 6 with the AmpSv_instMag_f as an input variable to the
PIOC function block. Since the AmpSv_instMag_f variable is
not defined under the PIOC class definition, it will not be
described in the SCL configuration file. Therefore, it is
necessary to have additional contextual information such as a
protection scheme shown in Fig. 3 to add further contextual
relationships between logical nodes that are missing in the
SCL description. Logical Node variables such as settings or
measured values can be automatically generated based on the
SCL description, but input variables, which rely on their
connected logical node cannot be created using the SCL
configuration. Thus it are the logical node dependent input
variables that are of utmost interest as it is necessary to create
these variables first (even though they are not defined under
their logical node class) before the logical connections can be
made.

D. eSWRL Rules for Transforming IEC61850 ontology to
IEC61499 Ontology

Note only a small part of entire IEC61499 ontology is used as
a target ontology in this case study. It are domain-specific
function blocks of type iTCTR_FB and iPIOC_FB,
has_interface, is_part_of_interface, event_connection, and
data_connection object properties, and has_name data
property.

There are four main rules, which are used to transform the
IEC61850 ontology to an existing IEC61499 system
represented in eSWRL. The eSWRL rules will be used to
create FB class, FB instances, function block interfaces and
connections between the function blocks. The TCTR and the
PIOC logical node will be used to demonstrate each of the
eSWRL rules. The rules are as follows:

1. The first rule set is to create generic function block
classes for logical nodes in the target IEC61499
ontology. That is, for each logical node class in the
IEC61850 ontology, the corresponding class will be

Fig. 6. TCTR (Left) and PIOC (Right) implemented in IEC61499
Function Blocks

Fig. 5. iLN function block of PIOC with mirroring input and output
interface

created in the IEC61499 ontology. To create a new
class, the createClass [15] operator can be invoked.
The syntax for the createClass operator is:

eswrl:createClass({?<variable name> | <class

name>})

To create TCTR FB class (called iTCTR_FB), the
following rule can be used.

eswrl:thereIsClass(TCTR) ->

eswrl:createClass(iTCTR_FB)

2. The second rule is to create an instance of the newly

created iTCTR_FB class if an corresponding
individual exists in the IEC61850 ontology. To create
a new instance, the createInstance operator will be
used. The syntax for the createInstance operator is:

eswrl:createInstance({?<variable name> |
<class name>}, {?<variable name> | <class

instance name>})

To create the new instance, the following rules can be
used.

TCTR(?tctr_ln), has_name(?tctr_ln, ?nm) ->
eswrl:createInstance(iTCTR_FB, ?tctr_fb),

has_name(?tctr_fb, ?nm).

It should be noted that a link between an instance of
logical node (LN) class and the corresponding instance
of FB class is established on the basis of equality of their
names.

3. The third rule set is to create interfaces of logical node

function blocks. To illustrate this set of rules, PIOC
logical node will be used since PIOC has an input
variable from TCTR logical node. In addition, this type
of input variables will also have a complementary event
input created. E.g. for PIOC logical node,
AmpSv_instMag_f input variable will have a
complementary event input called fromTCTR created. To
create the function block interfaces, the same
createInstance operator is used. The rules for creating
the interface of PIOC function block are as follows:

The first step is to create the INIT (Initialization) and
INITO (Finish Initialization) event input and output.

iPIOC_FB(?pioc_fb) ->
eswrl:createInstance(FBinterface,
?pioc_fb_interface),
has_interface(?pioc_fb,
?pioc_fb_interface),
eswrl:createInstance(FBevent, ?e1),
has_name(?e1, “INIT”),
eswrl:createInstance(FBevent, ?e2),
has_name(?e2, “INITO”),
is_part_of_interface(?e1,
?pioc_i_interface),
is_part_of_interface(?e2,

?pioc_i_interface).

The second step is to add PIOC specific variables
StrVal_SetMag_f (Setting) and Op_general (Status).

iPIOC_FB(?pioc_fb),has_interface(?pioc_fb
, ?pioc_fb_interface)->
eswrl:createInstance(FBvariable, ?d1),
has_name(?d1, “StrVal_setMag_f”),
is_part_of_interface(?d1,
?pioc_fb_interface),eswrl:createInstance(
FBvariable, ?d2), has_name(?d2,
“Op_general”), is_part_of_interface(?d2,
?pioc_fb_interface).

The third step is to add the AmpSv_instMag_f as an input
variable from TCTR logical node. This variable is
determined in the rule implicitly by means of the
instance of PIOC LN class. In addition, it is also
necessary to create a complementary fromTCTR input
event for AmpSv_instMag_f input variable.

PIOC(?pioc_ln), iPIOC_FB(?pioc_fb),
has_name(?pioc_ln, ?nm),
has_name(?pioc_fb, ?nm),
has_connection_var(?pioc_ln, ?connVar),
has_interface(?pioc_fb,
?pioc_fb_interface) ->
eswrl:createInstance(FBvariable, ?v),
has_name(?v, ?connVar),
eswrl:createInstance(FBevent, ?e),
has_name(?e, “fromTCTR”),
is_part_of_interface(?e,
?pioc_fb_interface),
is_part_of_interface(?v,
?pioc_fb_interface).

4. The fourth rule is to make the connection between
AmpSv_instMag_f output variable of TCTR function
block and AmpSv_instMag_f input variable of PIOC
function block. Firstly, it is necessary to make the event
connection between INITO event output of TCTR
function block to INIT event input of PIOC function
block.

TCTR(?tctr_ln), PIOC(?pioc_ln),
hasConnection(?tctr_ln, ?pioc_ln),
iTCTR_FB(?tctr_fb),
has_name(?tctr_ln, ?nm1), has_name(?tctr_fb,
?nm1), iPIOC_FB(?pioc_fb),
has_name(?pioc_ln, ?nm2), has_name(?pioc_fb,
?nm2), has_interface(?tctr_fb,
?tctr_fb_interface), has_interface(?pioc_fb,
?pioc_fb_interface),
is_part_of_interface(?e1,
?tctr_fb_interface), has_name(?e1, “INITO”),
is_part_of_interface(?e2,
?pioc_fb_interface), has_name(?e2, “INIT”) -
> event_connection(?e1, ?e2).

Secondly, AmpSv_instMag_f variable from TCTR logical
node will be connected to AmpSv_instMag_f variable on
the PIOC logical node.

TCTR(?tctr_ln), PIOC(?pioc_ln),
hasConnection(?tctr_ln, ?pioc_ln),
iTCTR_FB(?tctr_fb), has_name(?tctr_ln, ?nm1),
has_name(?tctr_fb, ?nm1),
iPIOC_FB(?pioc_fb), has_name(?pioc_ln, ?nm2),
has_name(?pioc_fb, ?nm2),
has_interface(?tctr_fb, ?tctr_fb_interface),
has_interface(?pioc_fb, ?pioc_fb_interface),
is_part_of_interface(?e1,
?tctr_fb_interface),
has_name(?e1, “toPIOC”),
is_part_of_interface(?e2,
?pioc_fb_interface),
has_name(?e2, “fromTCTR”),
is_part_of_interface(?d1,
?tctr_fb_interface),
has_name(?d1, “AmpSv_instMag_f”),
is_part_of_interface(?d2,
?pioc_fb_interface),
has_name(?d2, “AmpSv_instMag_f”) ->
event_connection(?e1, ?e2),
data_connection(?d1, ?d2).

V. CONCLUSION

This is an initial work in proposing an ODE framework in
the automatic generation of IEC61850/61499 systems.
Ontology is adopted for the purpose of transformation as
existing SCL configuration does not contain concrete
contextual information between the logical nodes. Expressing
IEC61850 systems in ontology allows the integration of
protection related information from protection schemes. The
addition of a protection scheme which specifies contextual
relations between the logical nodes enables logical
connections to be automatically created between the logical
nodes when implemented as function blocks, which are
lacking in existing IEC61850/61499 based code generators.
The initial stage of the transformation process involves
transformation IEC61850 ontology to an existing IEC61499
ontology, creating an IEC61499 ontology which describes the
generic structure of an IEC61499 system and function blocks
with IEC61850 logical node interfaces and information of

logical connections. The ontology transformation uses
eSWRL, an extension to the semantic web rule language
SWRL, which enables the creation of ontology classes,
instances and properties. The IEC61499 ontology is then
subject to further transformation via Prolog to the final
IEC61499 control system.

REFERENCES
[1] CEN-CENELEC-ETSI, "“Smart Grid Coordination Group

(SGCG) Reference Architecture Smart Grid” report of CEN-
CENELEC-ETSI."

[2] A. Ipakchi and F. Albuyeh. (2009) Grid of the future. IEEE Power
Energy Magazine. 55-62.

[3] A. Huang, "FREEDM system - a vision for the future grid," in
Power and Energy Society General Meeting, 2010 IEEE, 2010, pp.
1-4.

[4] V. Vyatkin, G. Zhabelova, N. Higgins, M. Ulieru, K. Schwarz, and
N. K. C. Nair, "Standards-enabled Smart Grid for the future
Energy Web," in Innovative Smart Grid Technologies (ISGT),
2010, 2010, pp. 1-9.

[5] N. Higgins, V. Vyatkin, N.-K. C. Nair, and K. Schwarz,
"Distributed Power System Automation With IEC 61850, IEC
61499, and Intelligent Control," Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol. 41,
pp. 81-92, 2011.

[6] G. Zhabelova and V. Vyatkin, "Multiagent Smart Grid Automation
Architecture Based on IEC 61850/61499 Intelligent Logical
Nodes," Industrial Electronics, IEEE Transactions on, vol. 59, pp.
2351-2362, 2012.

[7] C.-W. Yang, G. Zhabelova, V. Vyatkin, N.-K. Nair, and A.
Apostolov, "Smart Grid automation: Distributed protection
application with IEC61850/IEC61499," in Industrial Informatics
(INDIN), 2012 10th IEEE International Conference on, 2012, pp.
1067-1072.

[8] J. Xu, C.-W. Yang, G. Zhabelova, V. Vyatkin, and S. Berber,
"Towards Implementation of IEC61850 GOOSE Messaging in
IEC61499 Environment," in Industrial Informatics (INDIN), 2013
11th IEEE International Conference on, 2013.

[9] T. Strasser, M. Stifter, F. Andren, D. Burnier de Castro, and W.
Hribernik, "Applying Open Standards and Open Source Software
for Smart Grid Applications: Simulation of Distributed Intelligent
Control of Power Systems," in IEEE Power & Energy Society
General Meeting 2011, 2011.

[10] S. M. Blair, F. Coffele, C. D. Booth, and G. M. Burt, "An Open
Platform for Rapid-Prototyping Protection and Control Schemes
With IEC 61850," Power Delivery, IEEE Transactions on, vol. 28,
pp. 1103-1110, 2013.

[11] F. Andren, T. Strasser, and W. Kastner, "Towards a common
modeling approach for Smart Grid automation," in Industrial
Electronics Society, IECON 2013 - 39th Annual Conference of the
IEEE, 2013, pp. 5340-5346.

[12] G. Zhabelova, C.-W. Yang, and V. Vyatkin, "SysGrid: IEC
61850/IEC 61499 based engineering process for Smart Grid
automation design," in Industrial Informatics (INDIN), 2013 11th
IEEE International Conference on, 2013, pp. 364-369.

[13] R. Santodomingo, J. A. Rodriguez-Mondejar, and M. A. Sanz-
Bobi, "Ontology Matching Approach to the Harmonization of CIM
and IEC 61850 Standards," in Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on,
2010, pp. 55-60.

[14] W. Dai, V. N. Dubinin, and V. Vyatkin, "Migration From PLC to
IEC 61499 Using Semantic Web Technologies," Systems, Man,
and Cybernetics: Systems, IEEE Transactions on, vol. PP, pp. 1-1,
2013.

[15] V. Dubinin, V. Vyatkin, and C.-W. Yang, "Automatic Generation
of Automation Applications Based on Ontology Transformations,"
presented at the Emerging Technologies & Factory Automation
(ETFA), 2014 IEEE 19th Conference on, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

